L ecture 4: Introduction to Instruction Set
Architecture

Prof Stevens
Fall 2000

Today: Instruction Set Architecture

e 1950sto 1960s. Computer Architecture Course
Computer Arithmetic

e 1970 to mid 1980s. Computer Architecture Course
Instruction Set Design, especially |SA appropriate
for compilers

e 1990 to 2000s. Computer Architecture Course
Design of CPU, memory system, |/O system,
Multiprocessors

Interface Design

A good interface:

« Lasts through many implementations (portability, compatibility)
 Is used in many different ways (generality)

 Provides convenient functionality to higher levels

 Permits an efficient implementation at lower levels

use \ imp 1 time
Interface
S =
use

imp 3 v

Structure of Modern Compilers

L + hined Front-end L Transform to common
g+ macinedep ront-endi per Languege Intermediate form

|ntermedi ate representation

Lang depend, High level opt Inlining & loop xforms
Machine independent
I
Slight lang + , :
Machine (regs.types) Global/Local opt | Register alocation, others
Highly machine Detailed inst selection,
Dependent Code generator Machine depend opts

L ang independent

What |s an Instruction Set Anyway?

Just a set of instructions
— encoding low level operations

Each instruction isdirectly!! executed by the CPU’s
hardware

— How isit represented?
* By abinary format since the hardware only grok’s bits
— Typical physical blobs are bits, bytes, words, n- words
Word sizeistypically 16, 32, 64 bits today

Options - fixed or variable length formats

— Fixed - each instruction encoded in same size field - typically 1
word

— Variable - half- word, whole- word, multiple word instructions are
possible

What Is an Instruction?

Usually a ssmple operation

Which operation is identified by the op- code field
— But operations require operands - 0, 1, or 2

To identify where they are, they must be addressed

— Addressisto some piece of storage

Storage possibilities are main memory, registers, or a stack
» Each hasit’sown particular organization
Two options: explicit or implicit addressing
— Implicit - the op- code implies the address of the operands

« ADD on astack machine - Pops the top 2 elements of the stack, then
pushes the result

— HP calculators work this way
— Can you spot the pro’s and con’s of this model?
— Explicit - the address is specified in some field of the instruction
* Note the potential for 3 addresses - 2 operands + the destination
— What are the advantages of addressing registers vs. memory?

What Operations are Needed?

Arithmetic + Logica

— ADD, SUB, MULT, DIV, SHIFT - logical and arithy AND, OR,
XOR, NOT

Data Transfer - copy, load, store
Control - branch, jump, call, return, trap

System - OS and memory management

— WEe'll ignore these for now - but remember they are needed
Floating Point

— Same as arithmetic but usually take bigger operands

Decimal - if you go for it what else do you need?
— Legacy from COBOL and the commercial application domain

String - move, compare, search
Media Processing Instructions, Graphics ?

Design Space of [SA

Five Primary Dimensions

* Number of explicit operands (0,1, 2,3)

e Operand Storage Where besides memory?

o Effective Address How is memory location
specified?

 Type & Size of Operands byte, int, float, vector, . . .
How is it specified?

e QOperations add, sub, mul, . ..
How is it specified?

Other Aspects

e Successor How isit specified?

e Conditions How are they determined?

* Encodings Fixed or variable? Wide?

e Parallelism

| SA Influence on Parformance

Instruction
Instruction Désodi
Source ST L ke
Code
L
/_'" : Instruction
S §
<hﬁn5“uc“u“5:)*?ihhx“HxH\: Encode
¢ i
g : R v*{ CPlacycleT)
Optimizing ‘i
[.
HEmpIIE Object §]| CPiand
Code Datapath

Complexity

Examples of 1SA Types

Explicit Explicit
- Result
Storage Type | Examples operands per e — operand access
ALU instruc. & method
Stack B5500, B6500 0 Stack Push & Pop Stack
HP2116B
HP 3000/70
Accumulator PDP-8 1 Accumulator | Acc = Acc + mem
Motorola 6809
+ ancient ones
Register Set | IBM 360 2o0r3 Registers | Rx = Ry + mem (3)
DEC VAX Z or Rx =Rx + Ry (2)
+ all modern Memory Rx=Rx + Rz (3)
micro's

register-register, register-memory,

and memory-memory (gone) options

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)
|

Accumulator + Index Registers
(Manchester Mark |, IBM 700 series 1953)

Separation of Programming Model
from Implementation

/ \

High-level Language Based Concept of a Family

(B5000 1963)\ / (IBM 360 1964)

General Purpose Register Machines

/ \
Complex Instruction Sets Load/Store Architecture
(Vax, Intel 432 1977-80) (C|DC 6600, Cray 1 1963-76)
RISC

(Mips,Sparc,88000,IBM RS6000, . . .1987)

How Do Each Type Computes C=A +B

Accumulator

— Load A

— Add B

— Store C
Stack

— Push A

— Push B

— ADD Pop C
Register

— Load R1, A
— Add R1,B
— Store C, R1

Consider - instruction encoding?
Consider what a search or sort would look like

Pros and Cons of Machine Type

Machine Type
Stack

Advantages

Simple effective address
Short instructions

Good code density
Simple I-decode

Disadvantages

Lack of random access.
Efficient code is difficult to
generate.

Stack is often a bottleneck.

Accumulator Minimal internal state Very high memory traffic
Fast context switch
Short instructions
Simple I-decode

Register Lots of code generation Longer instructions.

options.

Efficient code since compiler
has numerous useful
options.

Possibly complex effective
address generation.

Size and structure of register
set has many options.

ook at Fundamental Differencesin
Datapath and Control- Path

e Assumptions - Datapath
— Only direct addressing
— 8hit opcode for all (not true but difference is minor)
— 16 registers for GPR machine
— 16- bit memory address field
— Ignore byte and half- word accesses for ssimplicity
— Pick a32- bit data- word for grins

« Assumptions - control (ignore conditional - branch)
— Micro- code like descriptions
— FSM control isthe only control style used today

| nstruction Format

Accumulator - 24 bit instruction

8-bit 16-bit
OpCode Memory Address

Stack - also 24 bit but most instructions will be 8-bit (pack-em)

8-bit 16-bit
OpCode Memory Address

Register - 2 explicit operands (3 explicit is obvious) - 28 bits

8-bit 4-bit 16-bit
OpCode Reg-addr Memory Address

* Could pack but instruction word allignment would be a
problem.

Basic System Structure

Memory
! '
Control
ontro
CPU it Datapath
i

I '

Input/Output

Simple Accumulator Machine

Accumulator

A

I-Decode

A

MIR

I_; Memory

Accumulator Control

Loads
— Read Memory, Enable Memory to Accumulator
— Load Accumulator

Stores
— Enable Accumulator to MBUS
— Write Memory

ALU Op'’s
— Read Memory

— Enable ALU to Accumulator
— Load Accumulator

Branch - just like an I Fetch but with PC as address source
— Read Memory

— Enable Memory to MIR

— Load MIR

—_——— — — — — — —

Basic Stack Machine

Overflow : Stack Xili
and | Buffer
Underflow? :
I-Decode \.

A

MIR

MDR

4

Memory

Stack Control (over- smplified)

Loads
— Read Memory
— Push
Stores
— Enable Top to MBUS, Write Memory
— POp
ALU Op'’s
— Load Top or Next
— Pop or not
Branch - just like an I Fetch but with PC as address source
— Read Memory
— Enable Memory to MIR
— Load MIR

General Purpose Register Machine

Lopnd + R Sel f

Register

Ropnd Sel F Array ALU

5

I-Decode + ------------

GPR Machine Control

Loads - just like accumulator but select Reg.
Stores - just like accumulator but select Reg.
Branch - same as all the rest

ALU OPs - whoa!
— Select Left operand and result register

— Decide whether you want memory or aregister for the
right operand

— Note minimum of 3 busses between the Register array
and the ALU

GPR Machines Won!

 How many Reg’svs. which structure is the debate
of the day

e Lot sof options have gone to press Hence
Register (mem, operand) classification

#. if»fl.emlm.'y Ops Max ALU) |
per typical ALU g Examples
b operands allowed
instruction
0 2 IBM RT-PC
3 SPARC, MIPS, HP-PA, PowerPC, ALPHA
1 2 PDP-10, M6800, IBM 360, Intel 90x86
3 IBM 360RS
2 2 PDP-11, National 32x32, IBM 360SS, VAX
3 NEC 51
3 3 VAX - blech!

Register- Register (0, 3) Pro's+ Con’s

(m, N) m memory operands, n total operandsin ALU
Instruction

ALU isRegister to Register -- 1. e. pure RISC

Advantages.
— Simple fixed length instruction encoding
— Decode is ssimple since instruction types are small
— Simple code generation model
— Instruction CPI tends to be very uniform

Disadvantages.
— Instruction count tends to be higher
— Some instructions are short - wasting instruction word bits

Register- Memory (1,2) P+ C’s

Evolved RISC and also old CISC - go figure?

— New RISC machines capable of doing speculative and/ or deferred
loads

Register - Memory ALU Architecture

Advantages.

— Dataaccessto ALU immediate without loading first

— Instruction format is relatively ssmple

— Dengity isimproved over Register (0, 3) model
Disadvantages.

— Operands are not equivalent - source operand may be destroyed

— Need for memory address field may limit # of registers

— CPI will vary

Memory- Memory (3,3) P+ C’s

True Memory - Memory ALU Architecture

True and most complex CISC mode
— currently extinct and likely to remain so
— more complex memory actions are likely to appear but not directly
linked to the ALU
Advantages.
— Most compact
— Doesn’'t waste registers for temporary values

Disadvantages.
— Large variation in instruction size - may need a shoe- horn

— Large variation in CPI - i. e. work per instruction
— Exacerbates the infamous memory bottleneck

Memory Addressing

All architectures clearly need some way to address
memory

A number of questions naturally arise

What Is accessed - byte, word, multiple words

— « For no good reason many of today’ s machine are byte
addressable

— « But the main memory is organized in 32 - 64 byte lines to match
cache model
Hence there is a natural alignment problem

— Accessing aword or double- word which crosses 2 lines requires 2
references

— automagic alignment is possible but hides the number of references

— Also therefore hides an important case of CPI bloat hence a bad
Idea

When We Address Bytes —
Who Getsto Be First?

Same i1ssue with bit numbers - less of an |SA i1ssue

Big Endian - byte O iIsthe MSB
Little Endian - byte O isthe LSB

Wouldn't be abig deal if we didn’t have byte
serial communication and I/ O devices

Other Alignment | ssues

e Common convention Isto expect aligned data
objects
— compiler isresponsible for keeping this straight
— hardware just checks - e. g. generates atrap if
alignment restrictions are violated

— Implies that op- code istype specific LDB - load byte,
LDW - load word, etc.
e Hence
— byte address is anything - never misaligned

— half word - even addresses - low order address bit = 0
elsetrap

— word - low order 2 address bits= 0 else trap
— double word - low order 3 address bits= 0 else trap

Addressing M odes

* Animportant aspect of ISA design

has major impact on both the HW complexity and the IC
HW complexity affects the CPI and the cycle time

e Basicaly aset of mappings

from address specified to address used
address used = effective address

Effective address may go to memory or to aregister array which is
typically dependent on it’s location in the instruction field

In some modes multiple fields are combined to form a memory
address

register addresses are usually more smple - e. g. they need to be
fast effective address generation is an important focus sinceit is

the common case - e. g. every instruction needs it it must also be
fast

Note tower of Babel effect
— address mode names are vendor specific

Addressing Modes |

Mode Example Instruction Meaning Use

Register Add R4, R3 Regs[R4] <- Regs[R4] + All RISC ALU operations
Regs[R3]

Immediate Add R4, #3 Regs[R4] <- Regs[R4] + 3 for small constants - prob-

lems?

Displacement Add R4, 100(R1) Regs[R4] <- Regs[R4] + accessing local variables
Mem[100 + Regs[R1]]

Register deferred or Indirect | Add R4, (R1) Regs[R4] <- Regs[R4} + pointers
Mem[Regs[R1]]

Indexed Add R3, (R1+ R2) Regs[R3] <- Regs [R3] + array access - R1is the
Mem[Regs[R1] + Regs[R2]] | base, R is the index

Direct or absolute

Add R1, (1001)

Regs[R1] <- Regs[R1] +
Mem[1001]

Addressing Modes ||

Mode Example Instruction Meaning Use
Memory Indirect or Add R1, @R3 Regs[R1] <- Regs[R1] + If R3 holds a pointer
Memory Deferred Mem[Mem[Regs[3]]] address, then result is the
full dereferenced pointer

Autoincrement Add R1, (R2) + Regs[R1] <- Regs[R1] + Array walks - if element of

in this case post increment Mem[Regs[R2]]; size d is accessed then

note symmetry with autodec Regs[R2] <- Regs[R2] + d pointer increments auto

Autodecrement Add R1, - (R2) Regs[R2] <- Regs[R2] - d; array walks, with autoinc

in this case predecrement Regs[R1] <- Regs[R1] + useful for stack
Mem[Regs[R2]]; implementation

Scaled Add R1, 100 (R2) [R3] Regs[R1] <- Regs[R1] + array access - may be
Mem[100 + Regs[R2] + applied to indexed
Regs[R3] * d] addressing in some

machines

A "Typical" RISC

32-bit fixed format instruction (3 formats)
32 32-bit GPR (RO contains zero, DP take pair)
3-address, reg-reg arithmetic instruction

Single address mode for |oad/store:
base + displacement

— no indirection
Simple branch conditions
Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, 1960, 1860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

Example: MIPS

Register-Register

31 26 25 2120 16 15 1110 6 5

Op Rsl Rs2 Rd

Register-Immediate

31 26 25 2120 16 15
Op Rs1 Rd immediate
Branch
31 26 25 2120 16 15
Op Rs1 ‘thlOpx immediate
Jump / Call
31 26 25

Op target

Most Popular ISA of All Time;
The Intel 80x86

e 1971: Intel invents microprocessor 4004/8008,
— 8080in 1975

e 1975: Gordon Moore realized one more chance for new
| SA before ISA locked in for decades

— Hired CS people in Oregon
— Weren't ready in 1977
o CSpeopledid432in 1980

— Started crash effort for 16-bit microcomputer

— 1978: 8086 dedicated registers, segmented address, 16 bit

— 8088; 8-bit external bus version of 8086;
added as after thought

Most Popular ISA of All Time;

The Intel 80x86
1980: IBM selects 8088 as basisfor IBM PC

1980: 8087 floating point coprocessor:
adds 60 instructions using hybrid stack/register
scheme

1982: 80286 24-bit address, protection, memory
mapping

1985: 80386 32-bit address, 32-bit GP registers,
paging

1989: 80486 & Pentium in 1992: faster + MP few
Instructions

Intel 80x86 Integer Registers

a0 386,80486 Pentium 8086 ,80286
31 15 a7 0
GPR 0 | EAX AX | AH | AL | Accumulator

GPR 1 | ECX CxX| CH | CL | CountReq: String, Loop
GPR 2 | EDX DX | DH | DL | Data Reg: Multiply, Divide
GPR 3 | EBX BX| BH | BL | BaseAddr. Reg

GPR 4 | ESP P Stack Ptr.
GPR 5| EEP EP Base Pir. (for base of stack seq.)
GPR 6 | ESI Sl Index Req, String Source Pir.
GPR 7 | EDI DI Index Reg, String Dest. Pir.
C5 Code Segment Pir.
53 StackSegment Ptr.top of stack)
D5 Data Segment Ptr.
ES Extra Data Segment Pir
FS Data Segrment Ptr. 2
G5 Data Segment Ptr. 3
FC |FIP IP Instruction Fr.(PC)
| FLAGS Condition Codes

Intel 80x86 Floating Point Registers

T T T T
L A
VIV
~J NN P lat b —

Statu51 Tep of FI?.SIE'EI(!
— FP Condition Codes

80x86 Instruction Format

e 8086 in black: 80386 extensions in color

Repeat
Lock
|S€d. Ovemide Prefixes
ddr. Override
Size Override
Opcode }
Opcode Ext.
mod, reg. fm Address
¢ index, base } specifiers (Basereg + 25¢%e x Index reg)
DispS8
Displ 6
Dispz4
Disp32
Irnng
Imim 16 "
P Immediate
[Imm 32

Opcode

Displacement

80x86 Instruction Encoding: Mod, Reqg,
R/M Field

rw=0 w=1 r/m mod=0 mod=1 mod=2 mod=3
16b 32b 16b 32b | 16b 32b 16b 32b
0 AL AX EAX|O |addr=BX+Sl =EAX| same same same same same
1 CL CX ECX|1 |addr=BX+DI=ECX| addr addr addr addr as
2 DL DX EDX 2 |addr=BP+SI =EDX| mod=0 mod=0 | mod=0 mod=0 reg
3 BL BX EBX|3 |addr=BP+Sl =EBX| +d8 +0d8 +d16 +d32 field
4 AH S ESP |4 |addr=S =(sib)| SI+d8 (sib)+d8| SI+d8 (sh)+d32 “
5 CH BP EBP|5 |addr=DI =d32 | DI+d8 EBP+d8| DI+d16 EBP+d32
6 DHS ES |6 |addr=d16 =ES | BP+d8 ESI+d8 | BP+d16 ESI+d32
7 BHADI EDI 7x addr=BX =EDI BX+d8 EDI+d8 BX+dl16 EDI+d32
}_T r/m field depends on mod and machine mode
w from First address specifier: Reg=3 bits,
opcode

R/M=3 bits, Mod=2 bhits

80x86 Instruction Encoding
Sc/Index/Base field

Index Base
0 | EAX EAX
1 | ECX ECX
2 | EDX EDX
3 | EBX EBX
4 | noindexESP
5 | EBP if mod=0, d32
If mod°0, EBP
6 | ES ESI
7 EDI EDI

Base + Scaled Index Mode
Used when:

mod =0,1,2

In 32-bit mode

AND r/m =4l

2-bit Scale Field
3-bit Index Field
3-bit Base Field

80x86 Addressing Mode Usage for 32-

bit Mode
Addressing Mode GceceEspr.NASA7 Soice Avg.
Register indirect 10%10% 6% 2% 7%
Base + 8-bit disp 46%43% 32% 4% 31%
Base + 32-bit disp 2% 0% 24% 10% 9%
Indexed 1% 0% 1% 0% 1%
Based indexed + 8b disp 0% 0% 4% 0% 1%
Based indexed + 32b disp 0% 0% 0% 0% 0%
Base + Scaled Indexed 12%31% 9% 0% 13%

Base+ Scaled Index + 8bdisp 2% 1% 2% 0% 1%
Base + Scaled Index + 32b disp6% 2% 2% 33% 11%
32-bit Direct 19% 12% 20% 51% 26%

Length in bytes

11

10

29%

0% 10% 20% 30%

% instructions at each length

80x86 Length Distribution

] Espresso

Gce
Spice
NASA7

| nstruction Counts. 80x86 v. DL X

SPEC pgm x86 DLX DLX+86
gcc 3,771,327,742 3,892,063,460 1.03
epresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa/ 15,603,040,963 6,118,740,321 0.39

Intel Summary

Archeology: history of instruction design in a single product
— Address size: 16 bit vs. 32-bit
— Protection: Segmentation vs. paged
— Temp. storage: accumulator vs. stack vs. registers

*Golden Handcuffs’ of binary compatibility affect design 20
years later, as Moore predicted

Not too difficult to make faster, as Intel has shown

Does the | A-64 announcement of common future Instruction
means end of 80x8677?

“Beauty isin the eye of the beholder”
— At 120M/year sold, it isa beautiful business

